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Polar bears in the southern Beaufort Sea II: Demography and

population growth in relation to sea ice conditions

by Christine M. Hunter, Hal Caswell, Michael C. Runge, Eric V. Regehr,
Steve C. Amstrup, and Ian Stirling

Abstract

This is a demographic analysis of the southern Beaufort (SB) polar bear population. The
analysis uses a female-dominant stage-classified matrix population model in which individuals
are classified by age and breeding status. Parameters were estimated from capture-recapture
data collected between 2001 and 2006. We focused on measures of long-term population growth
rate and on projections of population size over the next 100 years. We obtained these results
from both deterministic and stochastic demographic models. Demographic results were related
to a measure of sea ice condition, ice(t), defined as the number of ice-free days, in year t, in
the region of preferred polar bear habitat. Larger values of ice correspond to lower availability
of sea ice and longer ice-free periods. Uncertainty in results was quantified using a parametric
bootstrap approach that includes both sampling uncertainty and model selection uncertainty.

Deterministic models yielded estimates of population growth rate λ, under low ice conditions
in 2001–2003, ranging from 1.02 to 1.08. Under high ice conditions in 2004–2005, estimates of
λ ranged from 0.77 to 0.90. The overall growth rate estimated from a time-invariant model was
about 0.997; i.e., a 0.3% decline per year. Population growth rate was most elastic to changes
in adult female survival, and an LTRE analysis showed that the decline in λ relative to 2001
conditions was primarily due to reduction in adult female survival, with secondary contributions
from reduced breeding probability.

Based on demographic responses, we classified environmental conditions into good (2001–
2003) and bad (2004–2005) years, and used this classification to construct stochastic models. In
those models, good and bad years occur independently with specified probabilities. We found
that the stochastic growth rate declines with an increase in the frequency of bad years. The
observed frequency of bad years since 1979 would imply a stochastic growth rate of about -1%
per year.

Deterministic population projections over the next century predict serious declines unless
conditions typical of 2001–2003 were somehow to be maintained. Stochastic projections predict
a high probability of serious declines unless the frequency of bad ice years is less than its recent
average. To explore future trends in sea ice, we used the output of 10 selected general circulation
models (GCMs), forced with “business as usual” greenhouse gas emissions, to predict values of
ice(t) until the end of the century. We coupled these to the stochastic demographic model to
project population trends under scenarios of future climate change. All GCM models predict
a crash in the population within the next century, possibly preceded by a transient population
increase.

The parameter estimates on which the demographic models are based have high levels of
uncertainty associated with them, but the agreement of results from different statistical model
sets, deterministic and stochastic models, and models with and without climate forcing, speaks
for the robustness of the conclusions.
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1 Introduction

The US Fish and Wildlife Service (USFWS)
proposed listing polar bears (Ursus maritimus)
as a threatened species under the Endangered
Species Act in January 2007 (US Fish and Wild-
life Service 2007). To help inform their final de-
cision, they requested that the USGS conduct
additional analyses of existing data for polar
bears and their sea ice habitat. Part of this
effort involved demographic analyses to better
understand polar bear population status in the
southern Beaufort Sea (SB), one of 19 IUCN
(International Union for the Conservation of
Nature) populations of polar bears worldwide
(Aars et al. 2006).

This report addresses demography and pro-
jections of population growth for the SB polar
bear population in relation to current, recent,
and projected environmental conditions in the
southern Beaufort Sea. This is part II of a
two-part report. Part I (Regehr et al. 2007)
includes the details of estimation of the vital
rates (survival and breeding probabilities) and
describes the biological context of the SB popu-
lation in relation to the world-wide distribution
of polar bears; we will not repeat that informa-
tion here.

Our goals are to describe the demographic
status of polar bears in the SB under current
and recent conditions, to describe the effect of
sea ice conditions on demography, and to project
the future dynamics of the population under a
range of future sea ice scenarios. To do this,
we develop and analyze both deterministic and
stochastic stage-classified matrix population mod-
els. Such models are often used as a mathemat-
ical framework for studying populations of con-
servation concern (e.g., Fujiwara and Caswell
2001, Runge et al. 2004, Hunter and Caswell
2005a, Smith et al. 2005, Gervais et al. 2006)
because they are flexible enough to be tailored
to the biology of the species and the availabil-
ity of data and have a more completely devel-
oped mathematical theory than any other type
of population model.

We report measures of potential long-term
population growth rate, sensitivity and elastic-

ity of the growth rate to changes in the vital
rates, and other demographic statistics that can
help provide an understanding of the popula-
tion response to environmental conditions. We
also report the results of short-term population
projections, focusing on time scales of 45, 75,
and 100 years into the future. Our results are
based on estimates of the vital rates obtained
under a variety of statistical models, and hence
have sampling uncertainty and model selection
uncertainty associated with them. One of our
goals is to incorporate those sources of uncer-
tainty. This uncertainty is essential to evaluat-
ing the risks associated with possible manage-
ment actions.

2 Demographic model
structure

We begin by describing the structure of the
model, the estimation of parameters, and the
relationship with sea ice conditions.

2.1 The life cycle

Typical of large mammals, polar bears are long-
lived, have delayed maturity and low fecundity.
Female polar bears in the SB are first avail-
able to mate in April-June of their 5th year.1

Implantation of the conceptus is delayed until
September-October when pregnant females en-
ter maternal dens (Derocher and Stirling 1992,
Amstrup and Gardner 1994). Females give birth
in December-January and nurse until their cubs
of the year (COYs) are large enough to leave the
den the following March–April (Stirling 1988,
Amstrup 2003). Cubs that survive remain with
their mothers until they are weaned as 2-year-
olds.

We define the overall model structure with
a life cycle graph (Figure 1). The model dis-
tinguishes 6 female and 4 male stages based on
sex, age and reproductive status. Stage 1 and
7 are newly independent 2-year old females and
males, respectively. Stages 2 and 3 are females

1In this regard, the SB population differs from those
in other regions, which typically mate in their 4th year.
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aged 3 and 4 years, respectively. Stage 4 is fe-
males without dependent young and available
to breed (either single or accompanied by 2-
year olds). Mothers and their cubs are not in-
dependent during the two-plus years of parental
care, so we modeled the reproductive stages as
mother-cub units. Stage 5 is females accom-
panied by one or more COYs and stage 6 is
females accompanied by one or more yearlings.
Males are classified by age; stages 7, 8 and 9 are
aged 2, 3, and 4 years, respectively, and stage
10 is males 5 years of age or older. This life
cycle graph differs from that used in Regehr et
al. (2007) only in that it includes reproduction
in addition to the transitions of existing indi-
viduals.

The projection interval is from April to April,
the time of sampling and when females with
COYs typically leave their maternal dens. Tran-
sitions of individuals or mother-cub units among
stages, and creation of new individuals, are in-
dicated by arcs in the life cycle graph. The
transition probabilities of existing individuals
are defined in terms of conditional probabilities.
The probability that a bear in stage i survives
from time t to t + 1 is σi(t). The conditional
probability that a female in stage i breeds be-
tween time t and t + 1, given survival, is βi(t).
The probability that at least one member of a
COY litter survives from year t to year t + 1,
given survival of the mother, is σL0. Thus, for
example, the transition from stage 4 to stage 5,
which requires a female to survive and breed,
occurs with probability σ4(t)β4(t). The transi-
tion from stage 4 to stage 4, which occurs when
a female survives but does not breed, occurs
with probability σ4(t)(1− β4(t)).

Fertility in this model appears on the arc
from stage 6 to stages 1 (female offspring) and
7 (male offspring). It depends on three quan-
tities: the survival of the mother (σ6), the sur-
vival of at least one member of a yearling litter
(σL1), and the average number of 2-year olds in
a successful litter (f). The calculation of σL1

and f is described in Section 2.3.1.

2.2 The demographic model

The life cycle graph corresponds to a stage-
structured matrix population model

n(t + 1) = Atn(t) (1)

where n(t) is a vector giving the number of in-
dividuals in each stage, ni(t), and At is a popu-
lation projection matrix that projects the pop-
ulation from t to t + 1. The entry aij of A is
the coefficient on the arc from stage j to stage
i in the life cycle graph. The projection matrix
is given by equation (2).

The upper left 6 × 6 corner of the matrix
describes the production of females by females.
The lower right 4× 4 corner describes the sur-
vival of males. The lower left corner describes
the production of males by females.

Polar bears are polygynous and only a por-
tion of females are available to mate in a given
year. Therefore, it is unlikely that female fer-
tility is limited by availability of males or fluc-
tuations in the sex ratio. Thus, we expect the
growth rate of the population to be determined
by the female portion of the life cycle and base
all subsequent analyses on the female matrix.

2.3 Parameter estimates

Parameters in the population projection ma-
trix were estimated from a multi-state mark-
recapture analysis based on the life cycle graph
in Figure 1 (Fujiwara and Caswell 2002, Caswell
and Fujiwara 2004). The data consisted of cap-
ture histories for 627 polar bears captured in
the SB study area between 2001 and 2006 (be-
tween Wainwright Alaska and Paulatuk, North-
west Territories, Canada; see Amstrup et al.
1986 and Regehr et al. 2007). We make a few
pertinent comments here but details of the pa-
rameter estimation can be found in Part I of
this report (Regehr et al. 2007).

We used maximum likelihood methods to fit
a candidate set of statistical models, developed
from biological considerations. The models dif-
fered in the extent of age- and stage-specificity
of the vital rates and in the dependence of sur-
vival and breeding probabilities on time and/or

3



A =




0 0 0 0 0 σ6σL1f
2 0 0 0 0

σ1 0 0 0 0 0 0 0 0 0
0 σ2 0 0 0 0 0 0 0 0
0 0 σ3 σ4(1− β4) σ5(1− σL0)(1− β5) σ6 0 0 0 0
0 0 0 σ4β4 σ5(1− σL0)β5 0 0 0 0 0
0 0 0 0 σ5σL0 0 0 0 0 0
0 0 0 0 0 σ6σL1f

2 0 0 0 0
0 0 0 0 0 0 σ7 0 0 0
0 0 0 0 0 0 0 σ8 0 0
0 0 0 0 0 0 0 0 σ9 σ10




(2)

on a covariate describing sea ice conditions (see
Section 2.4). Models were evaluated using Akaike’s
Information Criterion (AIC; Burnham and An-
derson 2002). AIC weights were used to pro-
duce model-averaged estimates of parameters
for three sets of models. We refer to these as
the full model set, the non-covariate model set,
and the time-invariant model set.

The full model set contained all models with
∆AIC ≤ 4. Models in this set described breed-
ing probabilities (β4, β5) as time-dependent,
survival probabilities (σ1–σ6) primarily as co-
variate dependent, and COY litter survival (σL0)
as either time-invariant, covariate-dependent,
or time-dependent.

Covariate dependence was described by a
linear function on the logit scale. Because this
data set contained only 5 years of recaptures,
there was a high degree of uncertainty in the
slope and intercept parameters for covariate-
dependent survival. Moreover, the results of
covariate-dependent models are influenced by
the specific functional form of the covariate de-
pendence. To evaluate variation in the vital
rates without relying on a particular functional
form of covariate-dependence, we used the non-
covariate model set, which contained all mod-
els with ∆AIC ≤ 4 that did not include the
covariate (with ∆AIC measured relative to the
best model within this set). Comparison of re-
sults between the full model set and the non-
covariate model set provides a check on robust-
ness of the conclusions from the parametric form
of the covariate dependence.

Finally, the time-invariant model set included

all models with time-invariant parameters. This
set of models represents the best single estimate
for the vital rates over the period of the study,
although we note at the outset that the data
do not support the claim that the rates were,
in fact, constant.

Uncertainty in the demographic results arises
from sampling variability and model-selection
variability of the vital rate estimates. To evalu-
ate this uncertainty, we used a parametric boot-
strap procedure that is described in detail in
Regehr et al. (2007). Briefly, the method gen-
erates B bootstrap samples. Those samples
are allocated at random among the models in
the model set with probabilities given by the
Akaike weights. Within each model, samples of
the mathematical parameters θ are generated
from a multivariate normal distribution using
the estimated covariance matrix for that model.
From each bootstrap set of mathematical pa-
rameters, the vital rates π are calculated, where
π contains the stage-specific survival probabili-
ties, breeding probabilities, and fertility. These
are used to construct projection matrices and
calculate demographic statistics. Unless other-
wise noted, we used B = 10, 000. We present
measures of variance either by plotting the dis-
tribution of the resulting statistic, or as 90%
confidence intervals obtained as the 5th and
95th percentiles of the bootstrap distributions
(Efron and Tibshirani 1993).

2.3.1 Fertility

The fertility parameters, σL1 and f , could not
be directly estimated by the mark-recapture anal-
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ysis, but instead were calculated from the other
vital rates and from an independent value for
the probability distribution of litter size. The
calculation takes account of both survival of in-
dividual cubs and the chance of loss of entire
litters.

The size distribution of a litter (of COYs)
in stage 5 was set to

c =
(

0.276 0.724
)

(3)

where ci is the probability of a litter of size i.
These values were obtained from capture data
collected in 2001–2006 in the SB management
unit. We included only one- and two-cub litters
because triplets are rare for polar bears inhab-
iting the Arctic basin (Amstrup 2003). We did
not investigate variation in this parameter.

The probability of loss of a COY litter is

1− σL0 = (1− s)c1 + (1− s)2c2 (4)

where s is a measure of survival of a COY.
That is, a COY litter is lost if it consists of
one cub which dies, or two cubs both of which
die. Given c and an estimate of σL0, we solve
(4) for s.

Conditional on not losing the COY litter,
the size distribution of a yearling (stage 6) litter
is

y1 = [c1s + 2c2s(1− s)] /σL0 (5)
y2 = c2s

2/σL0 (6)

The probability of loss of the yearling litter be-
tween stage 6 and stage 1 is then

1− σL1 = (1− σ1)y1 + (1− σ1)2y2 (7)

where we assume that the survival of a yearling
cub is the same as that of a 2-year old bear in
stage 1. Conditional on not losing the yearling
litter, the size distribution of the litter arriving
at stage 1 is then

z1 = [y1σ1 + 2y2σ1(1− σ1)] /σL1 (8)
z2 =

[
y2σ

2
1

]
/σL1 (9)

The expected number of new stage 1 bears, con-
ditional on not losing the yearling litter, is then

f = z1 + 2z2. (10)

Multiplying this by the survival of the mother
and the probability of not losing the litter, and
dividing by 2 to account for the sex ratio, gives
the fertility σ6σL1f/2.

2.4 Climate model projections

The SB region is covered with annual sea ice
from approximately October to June, and par-
tially or completely ice free from July to Septem-
ber, when sea ice retreats northward into the
Arctic basin (Comiso 2006, Richter-Menge et
al. 2006). To represent ice conditions and habi-
tat availability for polar bears we derived an
index of sea ice conditions. This index, ice(t),
was the number of days during calendar year
t that were ice-free in the region of preferred
habitat for polar bears. Preferred habitat was
defined as waters within the SB management
unit east of Barrow, AK, with an ocean depth
less than 300 m because polar bears in the SB
select strongly for sea ice over the shallow wa-
ters of the continental shelf (Durner et al. 2004,
2007). A day was considered ice free if the mean
ice concentration in preferred habitat area was
less than 50%. Mean ice concentration was
the arithmetic mean of daily ice concentration
values for the 139 grid cells (25 × 25 km) in
the preferred habitat area based on passive mi-
crowave satellite imagery (from the National
Snow and Ice Data Center, Boulder, Colorado,
USA; ftp://sidads.colorado.edu/pub/).
Regehr et al. (2007) found that the ice covari-
ate was highly negatively correlated with the
availability of polar bear habitat as described
by resource selection functions (Durner et al.
2007)

Larger values of ice correspond to longer ice-
free periods and reduced amounts of ice avail-
able to polar bears. So we expect the effect on
survival, breeding, and population growth to be
negative. The multistate mark-recapture anal-
ysis (Regehr et al. 2007) found evidence of such
negative effects, using models in which the rela-
tionship between survival probabilities and ice
was described using a logistic function; i.e.,

logit
[
σi(t)

]
= ai + bi ice(t). (11)
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2.5 Demographic analysis sequence

A matrix population model (1) can assume sev-
eral forms, depending on whether the entries
in A are time-invariant, time-dependent, or de-
pendent on an environmental covariate. In what
follows, we analyze deterministic models, which
assume that environmental conditions remain
constant over time, and stochastic models, which
allow for variation in environmental conditions.
By analyzing a sequence of models we are able
to obtain more robust conclusions than would
be possible from examining any single model.
To orient the reader we give an outline here of
the sequence of models and analyses. The mod-
els we focus on are

1. Deterministic models

(a) time-invariant

(b) year-specific

2. Stochastic models

(a) stationary stochastic environments

(b) climate model scenarios

We begin with deterministic models. The
simplest of these is time-invariant, in which the
projection matrix is obtained from a single es-
timate of the vital rates over the entire pe-
riod 2001–2005. Then we consider year-specific
models, in which a separate projection matrix
is obtained for each of the years 2001,. . . ,2005.
The calculations from a given year-specific ma-
trix give the population dynamics that would
result if the conditions in that year were main-
tained indefinitely.

Then we incorporate environmental varia-
tion by constructing stochastic models. We clas-
sify these by the way the environment is de-
scribed. The simplest model is obtained by de-
scribing the environment as a stationary pro-
cess, i.e., one which fluctuates, but whose mean,
variance, and other statistical properties do not
change with time. In our models, the stationary
stochastic environment is characterized by the
frequency of years with poor sea ice conditions
(in a sense to be described precisely below).
Rather than assuming a stationary stochastic

environment, our second set of models derives
a stochastic environment from the output of
general circulation models (GCMs) for climate
over the next century. These models are non-
stationary, because they not only fluctuate, but
their statistical properties change over time.

The deterministic year-specific calculations
show the consequences of the conditions in the
years in which the parameters were estimated.
The stochastic models use that information to
project the consequences of future environmen-
tal fluctuations. Because the stochastic mod-
els use the year-specific models as components,
it is important to understand the behavior of
the deterministic models. For both determinis-
tic and stochastic calculations we compare the
results of models parameterized from the full
model set, the non-covariate model set, and for
deterministic models the time-invariant model
set. For all except the climate model scenarios,
we examine both long-term population growth
rates and short-term projections of population
size.

As was emphasized in Part I of this report
(Regehr et al. 2007), estimating the vital rates
from the available data was subject to large de-
grees of sampling and model selection uncer-
tainty. Examining multiple models helps doc-
ument the robustness, or lack thereof, of the
conclusions, as we discuss in Section 5.

3 Deterministic demography

We begin with the analysis of deterministic ver-
sions of the demographic model.

3.1 Deterministic methods

We apply deterministic demographic analyses
to the time-invariant model set, the full model
set, and the non-covariate model set. In most
cases, and unless otherwise specified, results for
the full model set and the non-covariate model
set were very similar.

The full model set and the non-covariate
model set contain year-specific parameter esti-
mates. As a result, demographic quantities cal-
culated from them are also year-specific, in the
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following sense. Suppose we take the vital rates
for 2001, construct the projection matrix A,
and calculate a population growth rate. That
rate describes the long-term population growth
that would occur if the conditions in 2001 were
held constant. Thus the growth rate represents,
and summarizes, the conditions present in 2001,
by asking what would happen if they were to be
maintained. Such results are called projections,
to distinguish them from predictions, or fore-
casts, that attempt to say what will actually
happen in the future.

We calculate the long-term population growth
rate as the dominant eigenvalue λ of A. The
continuous-time growth rate r is given by r =
log λ. If λ > 1 (i.e., r = log λ > 0) the popu-
lation will increase if the conditions remain the
same. If λ < 1 (i.e., r = log λ < 0) the popula-
tion will decline to extinction unless conditions
change. Under constant conditions, the popu-
lation will eventually converge to a stable stage
structure proportional to the right eigenvector
w corresponding to λ. The left eigenvector v
corresponding to λ gives the distribution of re-
productive values among the stages. A popula-
tion that is not at the stable stage distribution
will go through a period of transient fluctua-
tions in both abundance and structure before
the asymptotic growth rate is realized. These
transient fluctuations can be analyzed in terms
of the subdominant eigenvalues and eigenvec-
tors of A, or revealed by short-term projections
(see Section 3.1.3).

3.1.1 Perturbation analysis

Perturbation analysis measures the effect on pop-
ulation growth of changes in parameters. The
sensitivity of population growth rate to a pa-
rameter is the absolute change in population
growth rate caused by a small absolute change
in a parameter. The sensitivity of λ to a pa-
rameter π is

∂λ

∂π
= vT ∂A

∂π
w (12)

where the eigenvectors are scaled so that their
scalar product 〈v, s〉 = 1 (Caswell 1978, 2001)

and the derivative ∂A/∂π is a matrix whose
(i, j) entry is ∂aij/∂π. If π = aij , then (12)
reduces to

∂λ

∂aij
= viwj . (13)

It is often useful to express changes in parame-
ters, and their effects, on a proportional scale.
The elasticity of population growth rate to a
parameter is the proportional change in pop-
ulation growth rate caused by a proportional
change in the parameter, and is given by

π

λ

∂λ

∂π
. (14)

3.1.2 LTRE analysis

Differences in population growth rate λ among
years are the integrated result of all the differ-
ences in stage-specific survival, transitions, and
reproduction among those years. LTRE (life
table response experiment) analyses decompose
those differences into contributions from the dif-
ference in each of the vital rates (Caswell 1989,
2001).

Let πi be one of the demographic parame-
ters (survival probability, litter survival, breed-
ing, f , or σL1). We choose the conditions in
2001 as our reference, and examine the changes
in λ relative to this. Let λr be the growth rate
under the reference conditions and λt be the
growth rate under conditions in year t. Then,
to first order,

λt − λr ≈
∑

i

(
π

(t)
i − π

(r)
i

) ∂λ

∂πi

∣∣∣∣πi+πr
2

. (15)

The sensitivity term is calculated at the mean
of the reference and the treatment parameters.
The ith term in the summation on the right
hand side is the contribution of the differences
in the parameter πi to the difference in λ. A
parameter may make a small contribution if it
does not differ much, or if λ is not very sensitive
to differences in that parameter.

3.1.3 Population projection

Population growth rate λ gives the long-term
rate of population growth. In the short-term,
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growth may fluctuate because of deviations from
the stable stage distribution. To evaluate this,
we projected population growth for 45, 75, and
100 years2 according to (1), starting from an
initial population proportional to

n(0) =
(

0.106 0.068 0.106 0.461

0.151 0.108
)T

. (16)

This is an estimate of the structure of the SB
population, averaged over 2004–2006. It is ob-
tained from a Horvitz-Thomson estimator ap-
plied to mark-recapture data in the SB popula-
tion using recapture probabilities from Regehr
et al. (2006).

Because the models under consideration here
are linear, the projections produce population
size measured relative to the initial population,
and thus can be directly interpreted in terms
of proportional increase or decrease. Bootstrap
samples were used to document the uncertainty
in projected population size for each model set.

3.1.4 Correction for harvest mortality

Polar bears in the SB management unit are har-
vested as part of annual regulated hunts by na-
tive user groups in the US and Canada (Brower
et al. 2002). Regehr et al. (2007) used tag re-
turn data to estimate a harvest component h of
total mortality for female bears in stages 1–4.
To find the survival rate in the absence of har-
vest, we removed the current level of harvest
from the estimated survival rates by replacing
σi with σi

(1−h) . To evaluate the effect of various
rates of harvest mortality on population growth
rate, we then applied a range of harvest rates up
to 0.1 to stages 1–4. Harvest mortality was not
considered for stages 5 and 6 because hunters
are discouraged from taking females with de-
pendent cubs.

3.2 Results of deterministic analysis

3.2.1 Growth rates

Population growth rates are summarized in Ta-
ble 1. The time-invariant model set predicts

2The 45-year projection horizon was specifically re-
quested by the FWS.

a growth rate very close to stationarity (λ =
0.997, implying a decline of −0.3% per year).
The full model set and the non-covariate model
set both predict population growth or stability
under the conditions in 2001–2003 and popula-
tion decline under the conditions in 2004–2005.
The estimates of population growth rate are ac-
companied by significant uncertainty (Figure 2).
However, in 2004–2005, with a longer ice-free
season, only a tiny percentage of the bootstrap
samples produced positive population growth.

The stable stage distribution contains more
individuals in the adult stages than in sub-adult
stages. (Figure 3). In years with a longer ice-
free season the proportion of individuals in the
adult but not reproducing stage increased and
the proportion in all other stages decreased,
particularly the reproducing stages (Figure 3).
However, the distribution of individuals among
the six stages was not qualitatively different.
Similarly, the reproductive value of reproduc-
ing stages increased in years with poor condi-
tions but this change was relatively small (not
shown).

In long-lived species, the sensitivity and elas-
ticity of population growth rate to model pa-
rameters is typically greatest for adult survival
rates (e.g., Heppell et al. 2000). This popu-
lation was no exception, with λ most sensitive
and most elastic to survival of the adult female
stages (σ4–σ6). See Figure 3 for the full model
set and Figure A-2 for the non-covariate model
set.. Among the other parameters, only the
breeding probability of an adult female without
cubs (β4) makes a significant contribution to
population growth rate. Under the conditions
of 2004–2005, the sensitivity and elasticity of λ
to survival of individuals in stage 4 (adult, not
currently reproducing) increased. This partly
reflects the increase in the proportion of in-
dividuals in this stage under these conditions,
which increases its importance to λ.

The LTRE analysis decomposes the differ-
ences in λ (measured relative to 2001 condi-
tions) into contributions from each of the vital
rates. The decline in λ is mostly due to declines
in adult survival in stages 4–6 (σ4, σ5, and σ6),
with secondary contributions from the breeding
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probability of females in stage 4 (β4) (Figures
4).

3.2.2 Deterministic population projec-
tions

Short-term projections of the population show
that exponential growth is achieved quickly when
constant conditions are maintained; with no ap-
parent transient effects (Figure 5). This is ex-
pected because the initial population vector (16),
based on current population estimates, is not
far from the stable stage distribution.

The uncertainty in the short-term projec-
tions is shown by the probability distribution,
over the bootstrap sample, of the log of total fe-
male population size at 45 years relative to the
starting population size, i.e. log

(
N(45)
N(0)

)
. Un-

der the conditions experienced in years 2001–
2003, a high proportion of the bootstrap sam-
ples yield population increase. Under the con-
ditions of 2004–2005, almost all the boostrap
samples yield population decline, often to very
low values (Figures 5, A-3, and A-4).

Figure 5 shows the cumulative distribution
function (cdf) for this relative growth (the cu-
mulative distribution at x is the probability that
the variable in question is less than or equal to
x). Most of the mass for the cdf’s in 2001–
2003, is gained to the right of the zero line, in-
dicating that most of the probability distribu-
tion produces positive population change. The
cdf’s for conditions in 2004 and 2005 approach
1 to the left of the zero line, indicating that
almost all of the probability distribution pre-
dicts population decline. The distributions in
Figure 5 reflect the distribution of population
growth rates in Figure 2. Projections to 75 or
100 years merely extend the patterns apparent
at 45 years (Figure A-4).

The differences among years in the results
of population projection is partly due to vi-
tal rates expressed as functions of the ice co-
variate. As noted above and in Regehr et al.
(2007), estimating dependence on ice was dif-
ficult because the capture-recapture data set
spanned only five years, so we also examined
non-covariate models. Figure 6 compares the

population growth rate λ predicted by the full
model set as a function of ice with the values of
λ estimated from the non-covariate model set.
The similarity is remarkable.

From this figure, it appears that values of
ice greater than approximately 125 ice-free days
per year lead to precipitous declines in λ, but
that below this level λ is relatively insensitive
to ice. Of course, the pattern of λ for values
of ice greater than those observed in the data
is an extrapolation that depends completely on
the parametric form (logistic) assumed for the
covariate-dependence. This range of values could
be explored only through continued capture-
recapture studies of the SB population.

3.2.3 Effects of harvest

The effects of the harvest level of females on
population growth rate λ are shown in Figure 7;
the level of female harvest to which the popula-
tion is currently subject has only a small effect
on population growth rate.

4 Stochastic demography

Environmental conditions have changed over the
course of this study, and will no doubt change in
the future. The deterministic analyses (Section
3.2) characterize those conditions by project-
ing the population growth patterns that would
result if the conditions were somehow kept con-
stant. Now we turn to the effects of the fluctu-
ations themselves, using stochastic models.

A stochastic demographic model contains a
model of the environment, a link from the envi-
ronment to the vital rates, and a projection of
the population using those vital rates. We will
present results of two stochastic calculations,
which differ in the scenarios used to describe
variation in the environment.

Based on the patterns in survival (Regehr
et al. 2007) and in population growth rate
λ (Table 1, Figure 6), we classified 2001–2003
as “good” years, characterized by high survival
and estimates of population growth rate λ greater
than 1. We classified 2004–2005 as “bad” years,
characterized by reduced survival, and values
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of λ much less than 1. Our first approach to
stochastic models is based on the statistical pat-
terns of good and bad years.

Good years are associated with low values
of ice, and bad years are characterized by high
values of ice, but our first analysis does not
make any explicit connection to the dynamics
of ice. Instead, it assumes that good and bad
years occur independently and with a constant
probability q of a bad year and 1− q of a good
year. Population growth in such a stochastic
environment will depend on the value of q (i.e.,
on the long-term frequency of bad years), and
we examine this dependence. Although the en-
vironment fluctuates, its statistical properties
(e.g., the value of q) do not, so we call this a
stationary stochastic environment.3

Our second approach explicitly links the vi-
tal rates to future sea ice conditions. We used
the output of a set of 10 IPCC (Intergovernmen-
tal Panel on Climate Change) climate models
(DeWeaver 2007 describes the choice of these
models) to forecast scenarios of sea ice condi-
tions until the year 2100. We used the output
from these climate models to generate stochas-
tic sequences of good and bad years, and used
those sequences to project polar bear popula-
tion size through the end of the century.

Stochastic calculations include several dif-
ferent kinds of uncertainty. They include uncer-
tainty due to environmental stochasticity: even
if the probability of a bad year is fixed, some-
times a bad year will occur and sometimes it
will not. They include uncertainty due to the
sampling error in the vital rates, which we as-
sess using bootstrap samples and by comparing
the full and non-covariate model sets. Finally,
they include uncertainty due to the uncertainty
in forecasts of future climate conditions. We
obtain some information on this uncertainty by
using 10 climate models rather than a single
model, but it is not possible to examine cli-
mate forecast uncertainty within a single cli-
mate model because multiple stochastic realiza-

3Mathematically speaking, it is a particularly sim-
ple type of stationary environment, in which successive
states of the environment are independently and identi-
cally distributed.

tions of climate model output are generally not
available.

4.1 Stochastic methods

In this section we describe the methods used for
stochastic calculations.

4.1.1 Stationary stochastic environments

Let A(1), . . .A(5) denote the projection matri-
ces, for females, estimated in years 2001–2005,
and let q be the probability of occurrence of a
bad year. In a bad year, the population experi-
ences a matrix chosen from the set {A(4),A(5)}
with probability 1/2. In a good year, the popu-
lation experiences a matrix chosen from the set
{A(1),A(2),A(3)} with probability 1/3. Thus
the population grows according to

n(t + 1) = Atn(t) (17)

where the matrix At is

At =





A(1) with probability (1− q)/3
A(2) with probability (1− q)/3
A(3) with probability (1− q)/3
A(4) with probability q/2
A(5) with probability q/2

(18)
This algorithm uses the variability within the
good years, and within the bad years, as es-
timates — admittedly crude but better than
nothing — of the variation in the vital rates
within these categories (see Caswell and Kaye
2001 for another example).

Because this environmental process is sta-
tionary and ergodic, and because the projection
matrices form an ergodic set (e.g., Tuljapurkar
1990), the population has an expected per-year
growth rate given by

log λs = lim
T→∞

1
T

log ‖AT−1 · · ·A0n0‖ (19)

where ‖ · ‖ is the 1-norm and n0 is an arbitrary
initial population vector.

This growth rate is the stochastic analog of
the population growth rate λ in a time-invariant
environment, and is thus the relevant measure
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of long-term population growth in a stochastic
environment. If log λs ≤ 0, the population will
eventually decline to extinction (unless some-
thing happens to change the environment or the
vital rates). If log λs > 0 the population will
eventually grow, but even so, stochastic fluctu-
ations may carry it to sufficiently low densities
to cause extinction.

We estimated log λs by applying (19) with
T = 5000. The effects of parameter uncertainty
were evaluated by repeating these calculations
for 2000 samples from the parametric bootstrap
distribution of the vital rates.

The stochastic growth rate is an asymptotic
(long-term) index of population growth, as is λ
in the deterministic model. Thus we also car-
ried out short-term projections, starting with
an initial population with the observed popula-
tion structure (16), and calculated the propor-
tional increase or decrease in total population
size at times t = 45, 75, and 100 years.

4.1.2 Sensitivity analysis of the stochas-
tic growth rate

To calculate the sensitivity of log λs and the
elasticity of λs to changes in parameters, we
used the perturbation analysis of Tuljapurkar
(1990) and Caswell (2005, 2007).

Following Regehr et al. (2007), let π be the
vector of demographic parameters

π =
(

σ1 · · · σ6 σL0 β4 β5 f
)T (20)

and let

d log λs

dπT
=

(
d log λs

dπi

)
(21)

be the 1×10 vector of the sensitivities of log λs.
To calculate these sensitivities, we generate a
random sequence of matrices At for t = 0, . . . , T−
1. We use this sequence to generate a sequence
of stage distribution vectors

w(t + 1) =
Atw(t)
‖Atw(t)‖ , t = 0, . . . , T − 1,

(22)
one-step growth rates

Rt = ‖Atw(t)‖, (23)

and reproductive value vectors

vT(t− 1) =
vT(t)At−1

‖vT(t)At−1‖ t = 1, . . . , T.

(24)
In these calculations, the starting vectors w(0)
and v(T ) are arbitrary non-zero, non-negative
vectors with ‖w(0)‖ = ‖v(T )‖ = 1. Then the
sensitivities are calculated as

d log λs

dπT
= lim

T→∞
1
T

T−1∑

i=0

[
wT(i)⊗ vT(i + 1)

]

RivT(i + 1)w(i + 1)

×
(

dvecAi

dπT

)
. (25)

The elasticity of λs is

lim
T→∞

1
T

T−1∑

i=0

[
wT(i)⊗ vT(i + 1)

]

RivT(i + 1)w(i + 1)

×
(

dvecAi

dπT

)
diag (πi). (26)

In these expressions, ⊗ denotes the Kronecker
product, and dvecAi/dπT is the matrix (di-
mension 36 × 10) of derivatives of the entries
of Ai with respect to the parameters in π. We
calculated all sensitivities and elasticities using
T = 5000.

4.1.3 Climate model scenarios

To project population growth under future cli-
mate change scenarios, we extracted forecasts
of the availability of sea ice for polar bears in
the SB region, using monthly forecasts of sea ice
concentration from 10 IPCC Fourth Assessment
Report (AR-4) fully-coupled general circulation
models (GCMs; Table 2; see DeWeaver 2007 for
details of the selection process and properties of
the models). We used forecasts for the 21st cen-
tury based on a “business as usual” greenhouse
gas forcing scenario (Special Report on Emis-
sion Scenarios SRES-A1B). The 10 GCMs were
selected based on concordance between their
20th century simulations (20c3m) of sea ice ex-
tent and the observational record of ice extent
during 1953–1995 (DeWeaver 2007).
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Because GCMs do not provide suitable fore-
casts for areas as small as the SB, we used sea
ice concentration for a larger area composed of
5 IUCN polar bear management units (Aars et
al. 2006) with ice dynamics similar to the SB
management unit (Barents Sea, Beaufort Sea,
Chukchi Sea, Kara Sea and Laptev Sea; see
Rigor and Wallace 2004, Durner et al. 2007).
We assumed that the general trend in sea ice
availability in these 5 units was representative
of the general trend in the Southern Beaufort
region.

From each GCM output we calculated the
number of ice-free months during the calendar
year in the region of preferred habitat for po-
lar bears within the 5 IUCN units. Preferred
habitat was defined as waters over the conti-
nental shelf and less than 300m deep (Interna-
tional Bathymetric Chart of the Arctic Ocean;
http://www.ngdc.noaa.gov/mgg/bathymetry
/arctic/arctic.html). A month was considered
ice-free if the mean ice concentration in this re-
gion was less than 50%. Mean ice concentra-
tion was the arithmetic mean ice concentration
for all grid cells in the region of preferred habi-
tat. Among the 10 GCMs analyzed, the sea
ice grids had model-specific spatial resolutions
ranging from 1× 1 to 3× 4 degrees of latitude
and longitude (DeWeaver 2007).

We transformed the ice-free months to ice-
free days by multiplying by 30. Then the out-
put of each GCM was shifted so that the pro-
jected 2005 value coincided with the mean (114.4
days) of the ice-free days observed in the SB
during 2000–2005. This calibrated all the mod-
els and produced sea ice projections scaled rel-
ative to the observed current (or recent past)
conditions. Each year in the shifted trajec-
tory was then classified as good or bad depend-
ing on whether the number of ice-free days was
greater than or less than 127 (a value midway
between the values observed during the good
years 2001–2003 and the bad years 2004–2005).
To extract trends in the frequency of bad years
from this binary series, we applied a Gaussian
kernel smoother as described by Copas (1983;
see Smith et al. 2005 for an ecological applica-
tion similar to this one). The kernel standard

deviation (2.5 years) was chosen, as suggested
by Copas (1983), as a subjective compromise
between smoothing and variation.

Because these are short-term projections and
because the stochastic properties of the envi-
ronment change, there is no single measure of
population growth. Instead, we projected the
population from 2005 to 2100, with n(0) given
by (16), and with a matrix At chosen randomly
at each year with probabilities (18), with q as
the probability of a bad year in year t. The
proportional increase or decrease in total pop-
ulation size was recorded for each year.

4.2 Results of stochastic analysis

4.2.1 Stationary stochastic
environments

Population growth rates. The stochastic
growth rate declines with increases in the fre-
quency of bad years, shown in Figure 8. The
results for the full model set have been par-
titioned into two subsets because of an unex-
pected (and pathological) behavior of the these
models with ice-covariate dependence. Because
of the high variance in, and strong negative
correlation between, the estimates of the slope
and intercept of this response, a fraction (about
11%) of the bootstrap samples showed a posi-
tive response to bad ice years. Because of the
behavior of the logistic function, these led to ex-
tremely negative population growth rates under
conditions of good ice years (log λs as low −20,
which corresponds to a population half-life of
12 days). Neither a positive response to ice-free
conditions nor a population half-life measured
in days are biologically realistic, so we have par-
titioned the bootstrap samples of the full model
set into a subset conditional on a non-increasing
response and an (unrealistic) subset conditional
on an increasing response, and we focus on the
non-increasing subset. However, this partition
obviously affects our conclusions about trends,
so we rely on comparison with the non-covariate
set of models, which is not partitioned in any
way.

In both sets of models, the stochastic growth

12



rate decreases nearly linearly with increases in
the frequency q of bad years. The slope implies
that an increase of 0.1 in q would reduce the
stochastic growth rate log λs by 0.02y−1 (non-
covariate model set) or 0.03y−1 (full model set).
There is a critical threshold frequency above
which log λs < 0 and the population will de-
cline; this is q ≈ 0.175 (non-covariate model
set) or q ≈ 0.165 (full model set). These esti-
mates of the critical frequency should be com-
pared to the average frequency of bad ice years
observed since 1979 (6/28 = 0.21), with an ap-
parent increasing trend and decadal oscillations
(Figure 9). This observed frequency implies a
stochastic growth rate on the order of −0.014
for the full model set and −0.007 for the non-
covariate model set.

The elasticity of the stochastic growth rate
λs to changes in parameters is shown in Fig-
ure 10 for the full model set and Figure A-5
for the non-covariate model set, for a range of
frequencies (q) of bad years. Regardless of q,
the stochastic growth rate is most affected by
changes in adult female survival, in a pattern
similar to that of the deterministic growth rate
(Figure 3).

Population projection. The distributions of
relative population size at t = 45, 75, and 100
are shown in Figure 11. When bad years are
very rare (q = 0.01), the probability of de-
cline is approximately 0.25 for the non-covariate
model set and 0.20 for the full model set. When
q = 0.25 (similar to the observed average fre-
quency of bad ice years since 1979), the prob-
ability of decline at 45 years is approximately
0.6 for the non-covariate set and 0.9 for the full
model set. Decline to a population only 1% of
its current size might be considered a severe de-
cline; it would certainly put the population at
risk of extinction. With q = 0.25, the probabil-
ity of such a decline within 45 years is approx-
imately 0.2 for either model set.

Extending the time horizon increases the
risk of extreme decline. With q = 0.25, as t in-
crease from 45 to 75 to 100 years, probability of
extreme decline (to 1% of initial size) increases

from about 0.2 to 0.4 to 0.55 for the full model
set. The corresponding probabilities from the
non-covariate model set are about 0.15, 0.2, and
0.25 (Figure 11).

4.2.2 Climate model projections

Figure 12 (top panel) shows the coarse-grained
outputs of the climate models (integer values of
ice-free months). The 10 models differ in their
trends and intercepts, but they all predict in-
creases over the next century. Figure 12 shows
the results of rescaling these projections (mid-
dle panel) and transforming the trends into the
predicted probability of bad ice conditions (bot-
tom panel). Figure A-6 displays these trends for
each model individually. All 10 of the climate
models agree in forecasting an increase in the
incidence of bad years, reaching an incidence of
1 within the next century; indeed, all but one
of the models makes this prediction within the
next 50 years. Two GCMs (miub echo g and
mpi echam5) differ from the rest in predicting
a long delay (20–40 years) before the probabil-
ity of a bad ice year rises above zero.

Figure 13 shows population trajectories sam-
pled from the bootstrap distribution of matrices
and the 10 climate models. Most trajectories
decline to very low values well before the end of
the century. A few outliers increase greatly be-
fore declining. Closer examination (Figures A-
7 and A-8) reveals that these are associated
with the two GCMs that predict no bad years
for the next several decades.

The declines shown in Figure 13 obviously
carry some risk of extinction. However, the
models we use here can project population size
as declining exponentially towards zero, but can
never actually reach zero. Thus any interpre-
tation in terms of extinction must be accom-
panied by a definition of an extinction thresh-
old.4 If the current SB population numbers
about 1500 individuals (Regehr et al. 2006),

4Such thresholds are often called quasi-extinction
thresholds, to distinguish them from true extinction.
They may represent values believed to result in real ex-
tinction, or simply thresholds felt to be of management
concern.
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then a decline to 0.001 of current size corre-
sponds to a population of 1.5 bears, almost cer-
tainly incompatible with persistence. A decline
to 0.01 of current size corresponds to 15 bears,
which would certainly be at a high risk of ex-
tinction. Figure 14 shows the risk of declin-
ing to the thresholds of 0.01 and 0.001, treat-
ing the sampled set of population trajectories
as a probability distribution measuring our un-
certainty about future dynamics. The risk of
quasi-extinction, under either threshold and from
either model set, exceeds 75% by the end of the
century.

5 Discussion

We developed models for the current and fu-
ture demography of polar bears in the southern
Beaufort Sea that link sea ice conditions to pop-
ulation dynamics, embedding the parameter es-
timation directly in the modeling effort and tak-
ing full account of uncertainty that derives from
a number of sources. We were able to make
use of state-of-the-art demographic methods,
coupling them with results from GCM models.
This work is an important new analysis of the
status of the polar bear population in this re-
gion, and is also one of the first efforts to inte-
grate demographic and climate models. Below,
we discuss the results, their importance, and
considerations in the interpretation of our con-
clusions.

5.1 Interpretation of results

In this study, we were challenged to provide de-
mographic analyses of a long-lived species living
in a highly dynamic environment which is un-
dergoing dramatic changes, and to do so on the
basis of a relatively short-term set of estimates
of the vital rates. We have also been charged
with going beyond characterizing current con-
ditions to projecting the results of future sce-
narios.

Neither of these are easy tasks, which ex-
plains our continual invocation of results from
multiple sets of statistical models, from both

deterministic and stochastic demographic mod-
els, from stochastic models that do and that do
not rely on GCMs for future sea ice scenarios,
and from 10 different GCM projections. This,
unfortunately, may leave the reader lost in a
blizzard of detail. So, here we discuss and in-
terpret the overall results.

The reduction in survival and breeding prob-
abilities documented in Part I of this report
(Regehr et al. 2007) translate into declines in
the population growth rate λ from 2001 to 2005.
An LTRE analysis, which decomposes the dif-
ference in λ into contributions from the vital
rates, shows that the decline in λ is due pri-
marily to reductions in adult female survival,
and secondarily to reductions in breeding prob-
ability.

Projecting population size using the year-
specific vital rates gives increases under the con-
ditions in 2001–2003, but decreases under the
conditions of 2004–2005. The interpretation of
these results is clear: the SB environment de-
clined in quality (as far as polar bear popula-
tions are concerned) over the study period to a
point where, if nothing changes, the population
will decline rapidly to extinction.

Of course, things do change, and our stochas-
tic analyses address these changes. We phrase
these results in terms of good and bad years.
It is important to understand these categories.
There was a qualitative difference in the poten-
tial for population growth between the condi-
tions of 2001–2003 and of 2004–2005. This dif-
ference was associated with an approximately
50% increase in the duration of the ice-free pe-
riod (as measured by the ecologically-motivated
covariate ice). Our division of the years 2001–
2005 into good and bad is not based on a pri-
ori ideas of the effects of ice, but on the basis
of the population response to those conditions.
It is an admittedly crude binary classification
of a much more complicated response. Contin-
uation of capture-recapture studies in the SB
would make it possible to refine this descrip-
tion of the effects of the environment.

Even so, at this level of resolution it is clear
that the frequency of bad years in the future will
determine the fate of the SB polar bear popula-
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tion. A frequency greater than about 0.17 (one
bad year in 6) will produce a negative stochas-
tic growth rate and (unless something changes)
lead to eventual extinction. The observed fre-
quency of bad years appears to have been in-
creasing since records began in 1979 (Figure 9),5

but even taking the average observed frequency
(0.21) predicts a population decline of about 1%
per year.

This prediction is not far from the deter-
ministic growth rate calculated from a time-
invariant model. It would be useful to have
independent data on recent trends in size of
the SB population to corroborate these results,
but such information is not available. How-
ever, Amstrup et al. (1986) estimated an ap-
proximate population size of N ≈ 1800 in the
mid-1980s and Regehr et al. (2006) estimated a
population size of approximately 1500 in 2006.
A decrease from N = 1800 to N = 1500 be-
tween 1986 and 2006 represents an average de-
cline of 0.9% per year. Anecdotal evidence sug-
gests that the population may have increased
slightly from its mid-1980s level into the 1990s
(Amstrup et al. 2001). If the decline from 1800
to 1500 took place over 15 years, it would rep-
resent a rate of 1.2% per year, over 10 years, a
decline at a rate of 1.8% per year. Such com-
parisons are difficult because of the scant in-
dependent historical data and a high degree of
uncertainty around historical population esti-
mates. Nevertheless, the comparison supports
our estimates, to the extent that such limited
data can provide support.

No one, of course, predicts that Arctic sea
ice conditions will be stationary (e.g., IPCC
2007, Overland and Wang 2007, Stroeve et al.
2007). Our projections of future population
dynamics based on sea ice forecasts from 10
GCMs all show polar bear populations crash-
ing within the next century. The probability
of quasi-extinction, with thresholds of 0.01 or

5As we write this in August of 2007, a month prior to
the end of the sea ice melt season, the decline in Arctic
sea ice extent has set a new record for the available time
series from1979-2006 (National Snow and Ice Data Cen-
ter, http://nsidc.org/news/press/2007 seaiceminimum
/20070810 index.html).

0.001 (1% or 0.1% of current size) exceeds 0.7.
The details, but not the outcome, are sensitive
to the choice of GCM (see especially Figures A-
7 and A-8).

The links between loss of sea ice and sur-
vival, reproduction, and population growth could
be simple or complex. Sea ice retreat forc-
ing polar bears to swim longer distances, thus
increasing the risk of drowning or starvation,
would be a fairly simple connection between
increased open water and survival. However,
a reduction in the duration of ice cover over
water depths less than 300m will also affect
many ice-dependent species such as ringed seals
(Phoca hispida), bearded seals (Erignathus bar-
batus), and arctic cod (Boreogadus saida); see
e.g. Gaston et al. (2005). Many food web links
may be involved in these effects. Intuitively,
reduction in the availability of ringed seals, a
primary prey species of polar bears, whose pre-
ferred habitat is ice over waters less than 300 m
depth (Stirling et al. 1982), must play a role.

The formal spatial scope of inference for this
work is the southern Beaufort Sea population,
but to the extent that the SB represents other
populations in the divergent polar basin (Am-
strup et al. 2007), inference could be applied to
this larger zone. The ice covariate was calcu-
lated from GCMs over this larger zone (which
encompasses the Barents, Beaufort, Chukchi,
Kara, and Laptev Seas; DeWeaver 2007), so
the climate predictions do apply over this larger
area of inference. The demographic informa-
tion is derived from just the SB (Regehr et al.
2007), but the life-history and behavior of polar
bears in these regions is similar (Amstrup et al.
2007).

5.2 Coupling GCMs and demographic
models

To our knowledge, there are few, if any, exam-
ples of demographic models coupled to GCMs,
thus, this work represents a substantial break-
through in the integration of two major classes
of quantitative environmental analysis. There
are substantial challenges to such a coupling:
including (1) finding a way to link models that
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operate at substantially different spatial scales
and over different time intervals, and (2) discov-
ering a link between some environmental fac-
tor predicted by the climate models and a de-
mographic response that can be represented in
the population model. Future examples of such
coupled models will require these same issues
to be resolved for each new application.

Several aspects of our use of these climate
models deserve comment. First, we focused
on the IPCC A1B forcing scenario. This sce-
nario projects future global CO2 levels based
on a business-as-usual assumption about future
global economies and energy use. Several other
forcing scenarios have been explored by IPCC,
based on different assumption about patterns
of CO2 production and uptake, and these sce-
narios project different trends in global temper-
atures and other climatic variables. Thus, our
results do not capture uncertainty in population
projections derived from uncertainty about fu-
ture patterns of atmospheric CO2. The A1B
scenario, however, enjoys support as a middle-
of-the-road forecast, thus in this context, it is
neither precautionary nor optimistic.

Second, we chose 10 of the global circula-
tion models to include in our analysis, rather
than the whole suite of available models. The
rationale for this choice is described in a com-
panion report (DeWeaver 2007) but was based
on how well models match observed ice con-
ditions from 1953-1995. We believe these to
be the most appropriate models for forecasting
arctic sea ice dynamics. Some excluded models
do a very poor job of predicting sea ice, pre-
dicting either no change over the next century
or complete loss of sea ice. These models would
not provide useful projections.

Finally, we examined sea ice dynamics over
a larger area than the southern Beaufort Sea,
because of the spatial limitations of the global
circulation models. To the extent that this larger
area does not represent the patterns that will be
seen in the SB, our projections might change if
more detailed information were available. How-
ever, the use of the larger spatial area in the
climate models does make us more comfortable
drawing tentative inference about the popula-

tion dynamics in that part of the polar basin.

5.3 Caveats

Evaluation of the strength of our conclusions
requires consideration of a number of factors
that went into the calculations. Below we dis-
cuss several sets of issues, examining assump-
tions and exploring issues that could affect our
conclusions.

5.3.1 Estimation and inference

The conclusions of this report depend, in part,
on the parameter estimation methods used to
calculate inputs for the demographic model. Part
I of this report (Regehr et al. 2007) discusses
those methods in detail. However, we feel it
pertinent to mention that one concern that has
arisen in short-term mark-recapture studies of
animals with high survival rates is the potential
for negative bias in survival rates at the end of a
time series, due to non-random temporary emi-
gration. Regehr et al. (2007) carefully consider
this potential source of bias, concluding that it
is unlikely, but the possibility cannot be com-
pletely eliminated from any study.

Our evaluation of the effect of the frequency
of bad years on population growth rate depends
on using the periods 2001-2003 and 2004-2005
to characterize good and bad years, respectively.
These sample sizes are small (3 and 2 years,
respectively) and may not be representative of
the classes of conditions we wish to encapsu-
late, and there is considerable uncertainty in
the estimation of the growth rates for each of
those years. Nevertheless, our projections take
full account of this uncertainty, thus considering
the possibility that the difference between the
good and bad years is not as great as the means
imply, or is perhaps greater. The strength of
the patterns in the projections, even consider-
ing the uncertainty, is evidence of the signifi-
cance of the differences among these years.

Our projections of future population trend,
from the linked GCM-demographic model, are
predicated on a causal relationship between sea
ice extent and polar bear survival. No obser-
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vational (as opposed to experimental, which is
clearly impossible in this context) study can
ever provide iron-clad evidence of causation. How-
ever,the fact that we only considered one ex-
planatory variable, which was identified a pri-
ori, lends support to our argument. More im-
portantly, our understanding of the ecology of
the species clearly indicates that sea ice is an
environmental factor with effects on polar bear
survival and reproduction.

Finally, the models that included ice as a co-
variate were quite sensitive to uncertainty, giv-
ing rise in some cases to results that defied intu-
ition, such as a small fraction of replicates that
indicated current growth rates of 0. While this
raises some concern, it is understandable as a
statistical result of fitting a parametric model to
a short time series. We used the non-covariate
model set to explore the projections in the ab-
sence of this sensitivity. That both model sets
provide the same qualitative predictions, and
agree quantitatively in many instances, leads
us to believe that this sensitivity does not un-
dermine our conclusions.

5.3.2 Model structure

The conclusions of this report also depend, in
part, on the structure of the demographic model.
Several elements of the model structure deserve
comment.

The demographic model contains no density-
dependent mechanisms (either positive or neg-
ative). It is tempting to speculate that at low
population sizes some compensatory mechanism
might make growth rates increase because of re-
duced competition and provide some resilience
that our model does not capture. However, a
density-dependent analysis of the SB polar bear
population could not be as simple as that. It
would have to account for the prospect of dra-
matic declines in carrying capacity due to cli-
mate change. As a very crude calculation, if
the carrying capacity varies with overall Arctic
sea ice, it would have been declining at a rate
of about 1.8% per year since 1995 (Stroeve et
al. 2007). In the best of all density-dependent
worlds, the population would have been track-

ing that decline, leading to λ ≈ 0.98 without
any additional effects (e.g., mortality due to
drowning) of sea ice decline. To the extent that
polar bears rely on sea ice on the continental
shelf, near the southern edge of the Beaufort
Sea, future declines would have even more dra-
matic impact on carrying capacity. Alternately,
and perhaps more likely, if there is a depen-
satory mechanism (such that growth rates de-
crease even more because of Allee effects), then
the demise of the population could be acceler-
ated. In any event, the effects of density de-
pendence can only be speculation, pending the
development of models linking the carrying ca-
pacity and changes in the environment.

We have not included emigration or immi-
gration in the demographic model. If there
is permanent emigration from the SB popula-
tion, then the estimated survival rates reflect
the apparent survival rates, not the true sur-
vival rates. In this case, the population growth
rate would be accurate as far as the SB popula-
tion is concerned, but negatively biased relative
to the contribution the SB population makes to
the rangewide population (Runge et al. 2006).
Likewise, if there is net immigration to the SB
population from neighboring areas, which we
have not included, then the current and future
growth rates would not be as low as we have
estimated. From the standpoint of persistence
of the SB population, however, we might view
emigration as equivalent to death, because the
animals no longer remain in this region. Fur-
ther, immigration, even if it is occurring now, is
likely to become less important in the future, if
the SB region does not contain suitable habitat,
and if the neighboring regions begin to experi-
ence population declines. The effects of immi-
gration and emigration could only be evaluated
by developing a spatial model for polar bear
populations.

We have not included demographic stochas-
ticity in this model. Such stochasticity will ac-
celerate extinction once the population reaches
very small (10s of animals) absolute population
size (Caswell 2001). If the population becomes
small enough for demographic stochasticity to
be important, it is already at risk simply due to
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its small size. Thus this omission does not un-
dermine any of the major conclusions. The pri-
mary results of this analysis are driven by the
deterministic loss of sea ice and the concomi-
tant reduction in survival; stochastic effects add
variance to this pattern, but do not change the
general trends.

Finally, of course, no model constructed in
the present can predict how polar bears might
respond behaviorally to substantial changes in
their environment in the future. As summer
ice in the SB region retreats beyond the con-
tinental shelf, one might speculate that polar
bears could develop a new strategy for seeking
food (e.g., by becoming more land-based), they
could emigrate out of the region, or they could
continue to remain in the area. Our projec-
tions can only assume that they remain in the
area (and face reduced survival) or emigrate out
of the area (and be effectively dead as far as
the SB management unit is concerned). But,
as polar bears are one of the most mobile of
quadrupeds, and have evolved in a highly dy-
namic environment, one might speculate they
could adapt in some manner. However, all stud-
ies to date of annual movement patterns of po-
lar bears indicate a very high degree of fidelity
to their natal populations, including in SB and
western Hudson Bay, where they are already
being significantly and negatively affected by
changes in ice conditions. Further, the poten-
tial nutritive benefits of terrestrial feeding are
calorically insignificant and unlikely to provide
a panacea.

5.4 Importance of this work

This work was motivated by the need for a sta-
tus assessment to inform a regulatory decision.
It was facilitated by the existence of intensive
on-going field work in, and a long-term study
of, the SB polar bear population, and an in-
tensive although short-term capture-recapture
study from 2001–2006.

Our work provides decision-makers with the
scientific information needed to evaluate the sig-
nificance of the threat of the decline in the ex-
tent of sea ice to the SB polar bear population.

The results quantify the risk of decline over the
next 4 to 10 decades based on current knowl-
edge, and taking into account uncertainty that
arises from parameter estimation, a short time-
series of capture-recapture data, the form of
the population model, environmental variation,
and climate projections. The results are prob-
abilistic, in order to represent the uncertainty
that arises from all of these sources. Decision-
makers will need to grapple with how that un-
certainty affects the conclusion they make. In a
risk analytic framework, decision-makers could
use this information by identifying the event of
concern, deciding what level of risk (what prob-
ability) would trigger a particular decision, and
interpreting this analysis to see if that level of
risk was reached.

5.5 Prospects for further demographic
modeling

One of the advantages of matrix population mod-
els is that their construction lays bare the pro-
cesses which are included, and those which are
excluded, from any particular model. We note
here that further demographic modeling would
lead to further understanding of the dynam-
ics of this population. Spatial models (using
the multiregional matrix model formulation of
Hunter and Caswell 2005b) and subsidized mod-
els (e.g., Caswell 2007) could consider immi-
gration and emigration. An extension of the
capture-recapture study in the SB would even-
tually permit quantitative rather than qualita-
tive (“good” vs. “bad”) links to climate (an
example of one way to approach this is Lawler
et al. 2007). A connection to resource and
habitat models could help to develop a density-
dependent analysis.

The polar bear is a top predator in a rapidly
changing ecosystem. Further analysis of po-
lar bear populations will not only be important
for management of the species, but will play a
critical role in understanding the entire Arctic
ecosystem.
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6 Summary and Conclusions

Demographic analysis links the condition of the
environment to the fates of individuals and the
fates of individuals to the dynamics of popula-
tions. Reflecting these linkages, we can describe
our results in terms of a particular set of goals:

Goal 1. To evaluate the status of the south-
ern Beaufort Sea polar bear population
in terms of its current potential for pop-
ulation growth in both deterministic and
stochastic environments.

1. If conditions over the period 2001–
2005 remained constant they would
lead to a nearly stationary popula-
tion with a decline of about 0.3% per
year.

2. The population would be capable of
increasing if conditions experienced
in 2001–2003 were maintained. The
population would decline dramatically
if conditions in 2004–2005 persisted.

3. A frequency of years with conditions
similar to 2004–2005 (“bad” years)
greater than a critical value of about
0.17 would lead to population decline.
The observed frequency of bad years
since 1979 is approximately 0.21, and
appears to have been increasing.

4. A stochastic environment in which
good (2001–2003) and bad (2004–2005)
years occurred at the frequency ob-
served since 1979 would lead to pop-
ulation decline at a rate of about 1%
per year.

5. Population growth rate (both deter-
ministic and stochastic) is most elas-
tic to adult female survival and, to a
lesser degree, breeding probability.

Goal 2. To quantify the response of popula-
tion growth to the number of ice free days
over the continental shelf.

1. The deterministic population growth
rate showed a marked decrease above

a threshold number of ice-free days
(≈ 125) over the continental shelf. A
similar decrease in population growth
rate in the last two years, which had
above normal ice-free periods, was
observed from non-covariate models.

2. The stochastic growth rate declines
with increasing frequency of occur-
rence of years with above normal ice-
free days. An increase of 0.1 in the
frequency of such years reduces the
population growth rate by 2–3 per-
centage points per year.

Goal 3. To project future population growth
on a time scale of decades to a century, in
constant environments, in stochastic en-
vironments, and in environments forecast
by global climate models.

1. If conditions were to remain similar
to 2001-2003, the population would
increase over the next 45-100 years.
If conditions remained similar to 2004-
2005, the population would decline
precipitously within 45 years.

2. In a stochastic environment with a
frequency of bad years equal to the
observed value over the period 1979-
2006, the population would probably
decline to between 1% and 10% of
its current size before the end of the
century.

3. A stochastic environment described
by forecasts of sea ice conditions from
a suite of 10 GCMs all lead to crashes
of the population within the next 100
years, usually within the next 50 years.

4. The current population structure is
close to the stable stage distribution,
so asymptotic population growth rates
provide accurate descriptions of rel-
atively short-term (45 year) projec-
tions.

Goal 4. To evaluate the effects of uncertainty
in parameter estimates and model selec-
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tion on population growth rate and pop-
ulation projections.

1. Parametric bootstrap approaches per-
mit us to document the probability
of outcomes based on the sampling
uncertainty. In no case does the un-
certainty change the conclusions of
the analysis.

The intent of this analysis was to integrate
climate projections indicative of polar bear habi-
tat with demographic models of polar bear pop-
ulation dynamics and to evaluate the severity of
the threat faced by polar bears in the southern
Beaufort Sea due to changes in sea ice. We fo-
cused on the increasing number of ice-free days
over water 300m in depth or less. This rep-
resents the areas where ringed seals in the SB
are most abundant (Stirling et al. 1982). Our
analysis suggests that polar bears in the SB
are likely to experience an important decline
by mid-century as the Arctic ocean becomes in-
creasingly ice free in the summer.
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9 Tables

Table 1: Deterministic population growth rate λ, with 90% confidence intervals, standard error,
and proportion of bootstrap samples < 1, for the time-invariant, full, and non-covariate model sets.

Model set Year λ lower CI upper CI SE proportion < 1
time-invariant 0.997 0.755 1.053 0.105 0.57
full 2001 1.059 0.083 1.093 0.269 0.24

2002 1.061 0.109 1.094 0.265 0.24
2003 1.036 0.476 1.107 0.207 0.41
2004 0.765 0.541 0.932 0.120 1.00
2005 0.799 0.577 0.959 0.122 0.99

non-cov 2001 1.017 0.810 1.088 0.092 0.43
2002 1.022 0.836 1.088 0.084 0.40
2003 1.075 0.903 1.129 0.077 0.19
2004 0.801 0.549 1.000 0.135 0.95
2005 0.895 0.446 1.020 0.185 0.88
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Table 2: Ten IPCC AR-4 GCMs used to forecast ice covariates. IPCC model name, country
of origin, approximate grid resolution (degrees), and the number of runs used for demographic
projections.

IPCC model name Country Grid resolution Runs
ncar ccsm3 0 USA 1.0× 1.0 8
cccma cgcm3 1 Canada 3.8× 3.8 1
cnrm cm3 France 1.0× 2.0 1
gfdl cm2 0 USA 0.9× 1.0 1
giss aom USA 3.0× 4.0 1
ukmo hadgem1 UK 0.8× 1.0 1
ipsl cm4 France 1.0× 2.0 1
miroc3 2 medres Japan 1.0× 1.4 1
miub echo g Germany/Korea 1.5× 2.8 1
mpi echam5 Germany 1.0× 1.0 1
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10 Figures
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Figure 1: The polar bear life cycle graph; stages 1–6 are females and stages 7–10 are males. σi is
the probability of survival of an individual in stage i, σL0 and σL1 are the probability of at least
one member of a cub-of-the-year (COY) or yearling litter surviving to the following spring, f is
the expected size of yearling litters that survive to 2 years, and βi is the conditional probability,
given survival, of an individual in stage i breeding, thereby producing a COY litter with at least
one member surviving until the following spring.
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10.1 Deterministic model figures
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Figure 2: Bootstrap distribution of deterministic population growth rates (left column) and log of
population size at 45 years relative to starting population size (right column), from the full model
set for conditions in 2001–2005. Bar at left of histogram (right column) gives all instances below
axis minimum. Bootstrap sample size B = 10, 000.
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Figure 3: Stable stage distribution (left column) and elasticity of λ to model-averaged parameter
estimates (right column) from the full model set for conditions in 2001–2005.
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Figure 5: 45-year population projections (left column) for parameter estimates from the full, non-
covariate and time-invariant model sets. Cumulative bootstrap probability distribution (right col-
umn) of the log of population size at 45 years relative to the starting population size, from the full,
non-covariate and time-invariant model sets.
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model set.
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10.2 Stochastic model figures
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Figure 8: The stochastic growth rate log λs as a function of the frequency q of years with greater
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of (from top to bottom) the full model set conditional on non-increasing response, the full model
set conditional on increasing response, and the non-covariate model set. The right panels show the
estimates of log λs and 90% parametric bootstrap confidence intervals.

32



1975 1980 1985 1990 1995 2000 2005 2010
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Year

P
ro

ba
bi

lit
y 

of
 b

ad
 ic

e 
ye

ar

 

 

u=1.25
2
3

Figure 9: Frequency of bad ice conditions from 1979–2006, smoothed with a Gaussian kernel
smoother with standard deviation u = 1.5, 2, 3 (Copas 1983). Data from Figure 3 in Part I of this
report (Regehr et al. 2007).
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Figure 11: Cumulative distribution of population change from the full and non-covariate model
sets. Left panels show the cdf at t = 45 years as a function of the frequency q of bad years. Right
panels show the cdf at 45, 75, and 100 years for q = 0.25. Bootstrap sample of size B = 2000.
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Figure 12: Upper panel: projected ice-free days from each of 10 climate models, from 2005–2100.
Middle panel: projected ice free days rescaled to agree with the observed average ice-free days from
2000–2005. Lower panel: the projected probability of a bad ice year, from 2005–2100, from all 10
climate models.
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Figure 13: Stochastic projections based on climate models. Plotted are 200 bootstrap samples
taken over both vital rate variability and all 10 climate models.
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Figure 14: Probability of quasi-extinction, defined as a decline to a fraction 0.001 or 0.01 of initial
population size, obtained from 1000 bootstrap samples combining all 10 climate models.
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A Appendix figures
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Figure A-1: Bootstrap distributions of deterministic population growth rates, λ, from the full,
non-covariate and time-invariant model sets for conditions in 2001 and 2005. Bootstrap sample size
B = 10, 000.
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Figure A-2: Sensitivity (left column) and elasticity (right column) of population growth rate to
parameter estimates from the full, non-covariate and time-invariant model sets for conditions in
2001.
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Figure A-3: Distribution of the log of population size at 45 years relative to the starting population
size for parameter estimates from the full and non-covariate model sets in 2001 and 2005.
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Figure A-4: Distribution of the log of population size at 45, 75 and 100 years relative to the starting
population size for parameter estimates from the full model set in 2001 and 2005.
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ice conditions for parameter estimates from the non-covariate model set.
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